Abstract
High-density phases of TiO2, such as rutile and high-pressure TiO2-II, have attracted interest as materials with high dielectric constant and refractive index values, while combinations of TiO2-II with anatase and rutile have been considered promising materials for catalytic applications. In this work, the atomic layer deposition of TiO2 on α-Al2O3 (0 0 0 1) (c-sapphire) was used to grow thin films containing different combinations of TiO2-II, anatase, and rutile, and to investigate the properties of the films. The results obtained demonstrate that in a temperature range of 300–400 °C, where transition from anatase to TiO2-II and rutile growth occurs in the films deposited on c-sapphire, the phase composition and other properties of a film depend significantly on the film thickness and ALD process time parameters. The changes in the phase composition, related to formation of the TiO2-II phase, caused an increase in the density and refractive index, minor narrowing of the optical bandgap, and an increase in the hardness of the films deposited on c-sapphire at TG ≥ 400 °C. These properties, together with high catalytic efficiency of mixed TiO2-II and anatase phases, as reported earlier, make the films promising for application in various functional coatings.
Funder
Estonian Research Council
European Regional Development Fund
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献