Effects of Nitrogen Doping on Pulling Rate Range of Defect-Free Crystal in CZ Silicon

Author:

Sun Chenguang123,Lou Zhongshi3,Ai Xingtian24,Xue Zixuan3,Zhang Hui24,Chen Guifeng12

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300132, China

2. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300132, China

3. Zhonghuan Advanced Semiconductor Materials Co., Ltd., Yixing 214200, China

4. Hebei Engineering Laboratory of Photoelectronic Functional Crystals, Hebei University of Technology, Tianjin 300130, China

Abstract

We investigated the effect of nitrogen doping on the pulling rate range of defect-free crystal in silicon with a diameter of 200 mm. It was found that the pulling rate range of defect-free crystal in nitrogen-doped Czochralski silicon is wider and the pulling rate (defect free) is lower than it is in non-nitrogen-doped Czochralski silicon. Under the experiment, the pull rate was from 0.67 mm/min~0.58 mm/min to 0.65 mm/min~0.54 mm/min. To further confirm the above experimental analysis, a numerical simulation process of nitrogen-doped Czochralski and non-nitrogen-doped Czochralski in an industrial system was performed. The V/G value along the S/L interface was the same for both models, but the distribution of Cvi (concentration of vacancy–concentration of self-interstitial) for nitrogen-doped Czochralski crystal silicon was more uniform and flat in a nitrogen-doped single crystal. Furthermore, the nitrogen-doped Czochralski crystal silicon had a smaller void size and a higher oxygen precipitation density. The experimental results are in good agreement with the numerical simulation results.

Funder

project for the Science and Technology Correspondent of Tianjin City

Research Foundation of Education Bureau of Hebei

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3