Abstract
This study deposited CrAlN coatings from Al50Cr50 targets using high-power impulse magnetron sputtering, with a focus on the effects of nitrogen content and substrate bias voltage on the deposition rate, microstructure, crystal orientation, residual stress, and mechanical properties of the coating. The nitrogen content was adjusted by varying the N2/Ar flow ratio between 20% and 140%. Increasing the nitrogen flow rate during deposition led to corresponding decreases in the deposition rate and film thickness. X-ray diffractometer (XRD) analysis revealed that a low N2/Ar flow ratio (<40%) resulted in amorphous CrAlN, whereas a higher ratio (>40%) resulted in an face-centered cubic (FCC) phase. Bias voltage also had considerable influence on the residual stress and grain size. A refined grain structure and high internal stress resulted in hard CrAlN coatings. Among the various parameter combinations evaluated in this study, the highest hardness (35.4 GPa) and highest elastic modulus (426 GPa) were obtained using an N2/Ar flow ratio of 100% and a bias voltage of −120 V.
Funder
Ministry of Science and Technology, Taiwan
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献