Controlling the Structural, Mechanical and Frictional Properties of MoSx Coatings by High-Power Impulse Magnetron Sputtering

Author:

Kokalj DavidORCID,Debus JörgORCID,Stangier Dominic,Moldenhauer HenningORCID,Nikolov Alexander,Wittig Alexandra,Brümmer AndreasORCID,Tillmann Wolfgang

Abstract

Tribology, as the science and technology of interacting surfaces, typically relies on liquid lubricants which reduce friction and wear. For environmentally friendly tribological purposes and applications requiring a liquid-free performance, solid lubricants, such as MoS2 coatings, play an essential role. It is crucial to understand the interplay between the parameters of the coating synthesis and the characteristics of the coating. The impact of the deposition parameters on the structural, mechanical and frictional properties of MoSx thin films, which are synthesized by high-power impulse magnetron sputtering, are studied. The morphology, topography and stoichiometry (2.02 < x < 2.22) of the films are controlled by, in particular, the bias-voltage and heating power applied during the sputtering process. In combination with a low pulse frequency the hardness and elastic stiffness of the MoSx films are enhanced up to 2 and 90 GPa, respectively. This enhancement is assigned to a shortening of the Mo-S bonding lengths and a strengthening in the interatomic coupling as well as to a formation of small-sized crystallites at the surface. The friction coefficient reduces to µ = 0.10 for films with an initial (100) orientation and the mean roughness of the MoSx films decreases below 15 nm by shortening the cathode pulses.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference62 articles.

1. Superelastic (Cr,Al)N coatings for high end spindle bearings

2. Handbook of Physical Vapor Deposition (PVD) Processing;Mattox,2010

3. Simulationsgestützte Entwicklung eines unsynchronisierten Schraubenladers;Janicki,2007

4. Investigating a Small Oil-Flooded Twin-Screw Expander for Waste-Heat Utilisation in Organic Rankine Cycle Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3