Author:
Lu Xiaolong,Sui Xudong,Zhang Xiao,Yan Zhen,Hao Junying
Abstract
Purpose
This study aims to investigate the effect of V doping on the microstructure, chemical stability, mechanical and vacuum tribological behavior of sputtered MoS2 coatings.
Design/methodology/approach
The MoS2-V coatings are fabricated via tuning V target current by magnetron sputtering technique. The structural characteristic and elemental content of the coatings are measured by field emission scanning electron microscopy, X-ray diffractometer, electron probe X-ray micro-analyzer, Raman, X-ray photoelectron spectroscopy, high resolution transmission electron microscope and energy dispersive spectrometer. The hardness of the deposited coatings are tested by a nanoindentation technique. The vacuum tribological properties of MoS2-V coatings are studied by a ball-on-disc tribometer.
Findings
Introducing V into the MoS2 coatings results in a more compact microstructure. The hardness of the coatings increases with the doping of V. The MoS2-V coating deposited at a current of 0.2 A obtains the lowest friction coefficient (0.043) under vacuum. As the amount of V doping increases, the wear rate of the coating decreases first and then increases, among which the coating deposited at a current of 0.5 A has the lowest wear rate of 2.2 × 10–6 mm3/N·m.
Originality/value
This work elucidates the role of V doping on the lubrication mechanism of MoS2 coatings in a vacuum environment, and the MoS2-V coating is expected to be applied as a solid lubricant in space environment.
Subject
Surfaces, Coatings and Films,General Energy,Mechanical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献