Influence of V doping on the microstructure, chemical stability, mechanical and tribological properties of MoS2 coatings

Author:

Lu Xiaolong,Sui Xudong,Zhang Xiao,Yan Zhen,Hao Junying

Abstract

Purpose This study aims to investigate the effect of V doping on the microstructure, chemical stability, mechanical and vacuum tribological behavior of sputtered MoS2 coatings. Design/methodology/approach The MoS2-V coatings are fabricated via tuning V target current by magnetron sputtering technique. The structural characteristic and elemental content of the coatings are measured by field emission scanning electron microscopy, X-ray diffractometer, electron probe X-ray micro-analyzer, Raman, X-ray photoelectron spectroscopy, high resolution transmission electron microscope and energy dispersive spectrometer. The hardness of the deposited coatings are tested by a nanoindentation technique. The vacuum tribological properties of MoS2-V coatings are studied by a ball-on-disc tribometer. Findings Introducing V into the MoS2 coatings results in a more compact microstructure. The hardness of the coatings increases with the doping of V. The MoS2-V coating deposited at a current of 0.2 A obtains the lowest friction coefficient (0.043) under vacuum. As the amount of V doping increases, the wear rate of the coating decreases first and then increases, among which the coating deposited at a current of 0.5 A has the lowest wear rate of 2.2 × 10–6 mm3/N·m. Originality/value This work elucidates the role of V doping on the lubrication mechanism of MoS2 coatings in a vacuum environment, and the MoS2-V coating is expected to be applied as a solid lubricant in space environment.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3