Enhancement of Dopamine Electrochemical Detection with Manganese Doped Crystalline Copper Oxide

Author:

Guţoiu Simona1,Pogăcean Florina1,Măgeruşan Lidia1ORCID,Miclăuş Maria Olimpia1ORCID,Grad Oana1ORCID,Pană Ioan-Ovidiu1,Pruneanu Stela1ORCID

Affiliation:

1. National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania

Abstract

Manganese doped crystalline copper oxide (CuO:Mn) and undoped CuO were prepared at room temperature by the hydrothermal method. The complete physico-chemical characterization of the materials was performed using X-ray diffraction (XRD), transmission/scanning electron microscopy (TEM/SEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, their analytical applicability was tested in electrochemical experiments for a dopamine assay. According to the morphological investigation, the materials had a flat structure with nearly straight edges. The XRD analysis proved the formation of the CuO phase with good crystallinity, while the Mn doping was determined by XPS to be around 1 at.%. Under optimized conditions, at pH 5.0, the CuO:Mn modified electrode (CuO:Mn/SPE) showed a high signal for dopamine oxidation, with a linear response in the 0.1–1 µM and 1–100 µM ranges and a low limit of detection of 30.3 nM. Five times higher sensitivity for manganese doped copper oxide in comparison with the undoped sample was achieved. The applicability of the developed CuO:Mn/SPE electrode was also tested in a commercially available pharmaceutical drug with good results, suggesting that the developed sensor has promising biomedical application potential.

Funder

Ministry of Research, Innovation and Digitization

National Plan for Research, Development and Innovation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3