Abstract
Dopamine is an essential neurotransmitter for daily cognitive functions controlling many neurophysiological processes including memory, cognition, and physical control. Development of analytical methods and sensors to detect dopamine is important for health monitoring and neurological research. This review provides an overview of recent advances in the development of electrochemical catalytic biosensors based on enzyme and enzyme-mimetic materials and discusses their potential applications for measurements of dopamine in biological fluids. The first part of the review summarizes and critically assesses the different types of enzymes and enzyme mimetic materials that can be used to catalytically convert dopamine, followed by a discussion of the biosensor’s fabrication, key design parameters, and detection mechanism on various electrode platforms ranging from single-use screen-printed electrodes to microneedles and implantable microelectrodes. The second part provides examples of measurements of dopamine in biological samples, including saliva, urine, serum, cell cultures, and brain tissue. We conclude with a summary of advantages and limitations of these devices in the clinical field, and an outlook to future research towards the implementation and broader adoption of electrochemical biosensors in neurophysiology, pharmacology, and the clinical field.
Funder
National Science Foundation
Publisher
The Electrochemical Society
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献