Detecting Subsecond Dopamine Release with Fast-Scan Cyclic Voltammetry in Vivo

Author:

Robinson Donita L123,Venton B Jill12,Heien Michael L A V12,Wightman R Mark123

Affiliation:

1. Department of Chemistry

2. Neuroscience Center, and

3. Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-3290

Abstract

Abstract Background: Dopamine is a potent neuromodulator in the brain, influencing a variety of motivated behaviors and involved in several neurologic diseases. Measurements of extracellular dopamine in the brains of experimental animals have traditionally focused on a tonic timescale (minutes to hours). However, dopamine concentrations are now known to fluctuate on a phasic timescale (subseconds to seconds). Approach: Fast-scan cyclic voltammetry provides analytical chemical measurements of phasic dopamine signals in the rat brain. Content: Procedural aspects of the technique are discussed, with regard to appropriate use and in comparison with other methods. Finally, examples of data collected using fast-scan cyclic voltammetry are summarized, including naturally occurring dopamine transients and signals arising from electrical stimulation of dopamine neurons. Summary: Fast-scan cyclic voltammetry offers real-time measurements of changes in extracellular dopamine concentrations in vivo. With its subsecond time resolution, micrometer-dimension spatial resolution, and chemical selectivity, it is the most suitable technique currently available to measure transient concentration changes of dopamine.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3