Author:
Gan Mingyu,Yao Rui,Wang Baoping,Li Jiarong,Wang Ning,Choi Martin M F,Bian Wei
Abstract
Abstract
Dopamine (DA) is the most abundant catecholamine neurotransmitter in the brain and plays an extremely essential role in the physiological activities of the living organism. There is a critical need for accurately and efficiently detecting DA levels in organisms in order to reflect physiological states. Carbon nitride quantum dots (C3N4) were, in recent years, used enormously as electrochemical and fluorescence probes for the detection of metal ions, biomarkers and other environmental or food impurities due to their unique advantageous optical and electronic properties. 3-Aminophenylboronic acid (3-APBA) can specifically combine with DA through an aggregation effect, providing an effective DA detection method. In this work, 3-APBA modified carbon nitride quantum dots (3-APBA-CNQDs) were synthesized from urea and sodium citrate. The structure, chemical composition and optical properties of 3-APBA-CNQDs were investigated by XRD, TEM, UV–visible, and FT-IR spectroscopy. The addition of DA could induce fluorescence quenching of 3-APBA-CNQDs possibly through the inner filter effect (IFE). 3-APBA-CNQDs shows better selectivity and sensitivity to DA than other interfering substances. By optimizing the experiment conditions, good linearity was obtained at 0.10–51 μM DA with a low detection limit of 22.08 nM. More importantly, 3-APBA-CNQDs have been successfully applied for the detection of DA in human urine and blood samples as well as for bioimaging of intracellular DA. This study provides a promising novel method for the rapid detection of DA in real biological samples.
Funder
the Natural Science Foundation of Shanxi Province of China
Special Project of Lvliang for Introducing High-Level Science and Technology Talents
2023 Xinzhou City Key Research and Development Plan (Social Development Field) Project
Key Research Project of Science and Technology Plan in JinZhong Social Development Projects
Subject
Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics