Morphological Evolution and Interfacial Effects Analysis of Drop Motion in Transverse Vibration of Inclined Plate

Author:

Xu Jing,Ma Jingxuan,Ni Jing,Fan Shaochao,Zhang Linan,Wang RuijinORCID

Abstract

Based on experimental and simulation research, analysis of the morphological evolution and interfacial effects of drop motion in the transverse vibration of inclined micro-textured plate are studied. Experimental results show the morphological evolution of drop involves an oscillation stage, spreading and migration stage, and infiltration stage. The spread diameter increases from the initial 3.02 to 5.12 mm. Meanwhile, based on the real experimental morphology of the drop dynamic wettability, a two-phase flow theoretical model of motion evolution of forced vibration drop was established to simulate the drop spreading process. The analysis result shows the calculated results are close to the experimental results, and the on micro-textured surface is faster spreading coefficient is S-shaped and increases with the increase of time. The spreading velocity than the smooth one, and there is low-speed rotating airflow in the micro-textured pit. The vortex cushion effect and vortex wheel effect are the main reasons for the acceleration of drop motion. Two interfacial effects reduce the friction resistance and impel fluid movement.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3