The Shape of a Compressible Drop on a Vibrating Solid Plate

Author:

Ivantsov Andrey1ORCID,Lyubimova Tatyana12ORCID,Khilko Grigoriy1,Lyubimov Dmitry2

Affiliation:

1. Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences Perm, 614013 Perm, Russia

2. Theoretical Physics Department, Perm State University, 614068 Perm, Russia

Abstract

The influence of high-frequency vibrations on the shape of a compressible drop placed on an oscillating solid substrate is studied in this paper. Due to the significant difference in characteristic temporal scales, the average and pulsating motions of the drop can be considered separately. For nearly hemispherical drop, the solution to the problem of pulsating motion is found in the form of series in Legendre polynomials. Frequencies of natural sound oscillations of hemispherical axisymmetric drop are obtained. Resonances of the acoustic mode of drop oscillations are found. The problem of forced oscillations of hemispherical drop in the limit of weakly compressible liquid is considered. It is found that drop oscillation amplitude grows with vibration intensity according to quadratic law, which is consistent with the solution of the pulsation problem for finite compressibility assumption. A variational principle for calculation of average drop shape is formulated based on minimization of energy functional for the case, so the compressibility of the liquid should be taken into account. It is shown that the functional (the sum of the kinetic and potential energies of the pulsating flow, the kinetic energy of the averaged flow, and the surface tension energy of the drop) decreases and reaches a minimum value at quasi-equilibrium state, in which the average shape of the drop becomes static. The influence of vibrations on the drop shape is studied for small values of the vibrational parameter. The surface of the drop in the absence of vibrations is assumed to be hemispherical. Calculations showed that under vibrations, drop height decreases, while the area of the base increases.

Funder

Ministry of Science and High Education of Russia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of ultrasound on the dynamics of an air bubble near a solid surface;The European Physical Journal Special Topics;2024-07-15

2. Controlling a Free Surface With Thermocapillary Flows and Vibrations in Microgravity;Microgravity Science and Technology;2024-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3