Simulations of Effects of Geometric and Material Parameters on the Interfacial Stress of the Thermal Barrier Coatings with Free Edges

Author:

Tao Qiannan1ORCID,Wang Yanrong12ORCID,Yang Shun1ORCID,Liu Yihui1ORCID

Affiliation:

1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China

2. Jiangxi Research Institute, Beihang University, Nanchang 330096, China

Abstract

Interfacial stress between layers of thermal barrier coatings near free edges is a critical factor that may cause turbine blades to fail. This paper uses simulation methods to reveal the effects of variations in geometric and material parameters on the stress of thermal barrier coatings. The stress distributions of a disk-shaped coating–substrate system undergoing thermal mismatch are calculated by an analytical method and the finite element method. The analytical solution reveals that the coefficient of thermal expansion, elasticity modulus, Poisson’s ratio, and thickness of each layer affect interfacial stress between coatings and substrate. The simulation results exhibit significant concentrations of the normal and shear stresses, which make the coating system prone to cracking and spalling from the free edge. The parametric analysis highlights that the thermal mismatch strain affects the stress magnitude. The region affected by free edges becomes larger with increasing thickness, elasticity modulus, and Poisson’s ratio of the topcoat. Finally, two integral parameters are proposed to represent the stress state near the free edge related to mode I and II fracture, respectively. The parameters, not sensitive to the grid density, are validated by experiments.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3