Conjugate Heat Transfer Measurements and Predictions of a Blade Endwall With a Thermal Barrier Coating

Author:

Mensch Amy1,Thole Karen A.1,Craven Brent A.1

Affiliation:

1. Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 e-mail:

Abstract

Multiple thermal protection techniques, including thermal barrier coatings (TBCs), internal cooling and external cooling, are employed for gas turbine components to reduce metal temperatures and extend component life. Understanding the interaction of these cooling methods, in particular, provides valuable information for the design stage. The current study builds upon a conjugate heat transfer model of a blade endwall to examine the impact of a TBC on the cooling performance. The experimental data with and without TBC are compared to results from conjugate computational fluid dynamics (CFD) simulations. The cases considered include internal impingement jet cooling and film cooling at different blowing ratios with and without a TBC. Experimental and computational results indicate the TBC has a profound effect, reducing scaled wall temperatures for all cases. The TBC effect is shown to be more significant than the effect of increasing blowing ratio. The computational results, which agree fairly well to the experimental results, are used to explain why the improvement with TBC increases with blowing ratio. Additionally, the computational results reveal significant temperature gradients within the endwall, and information on the flow behavior within the impingement channel.

Publisher

ASME International

Subject

Mechanical Engineering

Reference44 articles.

1. Thermal Barrier Coatings for Gas-Turbine Engine Applications;Science,2002

2. Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling;ASME J. Eng. Gas Turbines Power,2014

3. Albert, J. E., Bogard, D. G., and Cunha, F., 2004, “Adiabatic and Overall Effectiveness for a Film Cooled Blade,” ASME Paper No. GT2004-53998. 10.1115/GT2004-53998

4. Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes,1983

5. The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3