Oxygen Barrier Performance of Poly(vinyl alcohol) Coating Films with Different Induced Crystallinity and Model Predictions

Author:

Idris AlaminORCID,Muntean Adrian,Mesic Beko,Lestelius Magnus,Javed Asif

Abstract

The presence of the crystalline regions in poly(vinyl alcohol) coating films acts as barrier clusters forcing the gas molecules to diffuse in a longer pathway in the amorphous region of the polymer, where diffusivity and solubility are promoted in comparison. Evaluating the influence of crystalline regions on the oxygen barrier property of a semi-crystalline polymer is thus essential to prepare better coating films. Poly(vinyl alcohol) coating films with varying induced crystallinity were prepared on a polyethylene terephthalate (PET) substrate by drying at different annealing temperatures for 10 min. The coating films were first delaminated from the PET substrate and then characterized using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) techniques to determine and confirm the induced percentage of crystallinity. The barrier performance of the coating films, i.e., the oxygen transmission rate (OTR), was measured at room temperature. Results showed a decrease in the OTR values of poly(vinyl alcohol) film with an increase in the degree of crystallinity of the polymer matrix. Tortuosity-based models, i.e., modified Nielsen models, were adopted to predict the barrier property of the semi-crystalline PVOH film with uniform or randomly distributed crystallites. A modified Nielsen model for orderly distributed crystallites with an aspect ratio of 3.4 and for randomly distributed crystallites with an aspect ratio of 10.4 resulted in a good correlation with the experimental observation. For the randomly distributed crystallites, lower absolute average relative errors of 4.66, 4.45, and 5.79% were observed as compared to orderly distributed crystallites when the degree of crystallinity was obtained using FTIR, DSC, and XRD data, respectively.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3