Advances in La-Based High-k Dielectrics for MOS Applications

Author:

Liu L.,Tang W.,Lai P.

Abstract

This paper reviews the studies on La-based high-k dielectrics for metal-oxide-semiconductor (MOS) applications in recent years. According to the analyses of the physical and chemical characteristics of La2O3, its hygroscopicity and defects (oxygen vacancies, oxygen interstitials, interface states, and grain boundary states) are the main problems for high-performance devices. Reports show that post-deposition treatments (high temperature, laser), nitrogen incorporation and doping by other high-k material are capable of solving these problems. On the other hand, doping La into other high-k oxides can effectively passivate their oxygen vacancies and improve the threshold voltages of relevant MOS devices, thus improving the device performance. Investigations on MOS devices including non-volatile memory, MOS field-effect transistor, thin-film transistor, and novel devices (FinFET and nanowire-based transistor) suggest that La-based high-k dielectrics have high potential to fulfill the high-performance requirements in future MOS applications.

Funder

University of Hong Kong

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3