Author:
Li Jiehui,Niu Gang,Bai Wei,Ma Yanjie,Xiong Qingren,Qin Changyi,Zhang Junjie,An Ruihua,Ren Wei
Abstract
High-quality graphene zinc-containing anticorrosive coatings are highly and urgently desirable for effective, economical anticorrosion of metals and alloys in industrial products. The realization of such coatings is, however, hindered by the dispersibility and compatibility of the graphene in them. This work reports a novel direct modification of graphene using sodium polystyrene sulfonate (PSS) without reduction of graphene oxide, leading to homogeneous dispersion of graphene in water. The agglomeration of graphene is prevented thanks to the formation of π−π interaction between PSS and graphene sheets. Such graphene dispersion can effectively improve the anticorrosion performance of the zinc-containing epoxy coatings. With the addition of graphene modified by PSS into the 20% zinc-containing epoxy coating (graphene is 0.05% by weight of the coating), its anticorrosion properties revealed by both electrochemical characterization and the neutral salt spray tolerance analysis are rather close to those of 60% zinc-containing epoxy coating. These results demonstrate that direct PSS modification is an effective method for graphene dispersion and thus open a pathway to achieve graphene zinc-containing anticorrosive coatings with high performance.
Funder
Key Research Project of Shaanxi Province of China
Natural Science Foundation of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献