Significant Improvement of Anticorrosion Properties of Zinc-Containing Coating Using Sodium Polystyrene Sulfonate Noncovalent Modified Graphene Dispersions

Author:

Li Jiehui,Niu Gang,Bai Wei,Ma Yanjie,Xiong Qingren,Qin Changyi,Zhang Junjie,An Ruihua,Ren Wei

Abstract

High-quality graphene zinc-containing anticorrosive coatings are highly and urgently desirable for effective, economical anticorrosion of metals and alloys in industrial products. The realization of such coatings is, however, hindered by the dispersibility and compatibility of the graphene in them. This work reports a novel direct modification of graphene using sodium polystyrene sulfonate (PSS) without reduction of graphene oxide, leading to homogeneous dispersion of graphene in water. The agglomeration of graphene is prevented thanks to the formation of π−π interaction between PSS and graphene sheets. Such graphene dispersion can effectively improve the anticorrosion performance of the zinc-containing epoxy coatings. With the addition of graphene modified by PSS into the 20% zinc-containing epoxy coating (graphene is 0.05% by weight of the coating), its anticorrosion properties revealed by both electrochemical characterization and the neutral salt spray tolerance analysis are rather close to those of 60% zinc-containing epoxy coating. These results demonstrate that direct PSS modification is an effective method for graphene dispersion and thus open a pathway to achieve graphene zinc-containing anticorrosive coatings with high performance.

Funder

Key Research Project of Shaanxi Province of China

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3