Effect of Different Water-Soluble Graphene: (Polystyrene Sulfonate, Titanate Coupling Agent and Glucose)/Reduced Graphene Oxide on the Performance of Magnesium-Air Batteries

Author:

Ma Jingling,Liu Cuiran,Qin Conghui,Jia Xingliang,Zhang Chenfei,Ren Fengzhang,Wang GuangxinORCID

Abstract

Three kinds of water-soluble graphene: (WSG: polystyrene sulfonate, titanate coupling agent and glucose)/reduced graphene oxide were prepared for fabricating magnesium-air batteries with AP65 anode. Corrosion behaviour and discharge performance were investigated. The three kinds of water-soluble graphene added respectively in NaCl solution result in a more negative potential and a lower exchange current density in the potentiodynamic polarization curve of AP65 anode. The comprehensive discharge performance of the magnesium-air battery with the polystyrene sulfonate/reduced graphene oxide (PSS/RGO) is better than other 3 batteries. This is due to non-covalent adsorption of PSS on RGO and ππ interactions formed between PSS and RGO, which prevents graphene from agglomeration. PSS/RGO not only improves the ionic conductivity of solution, but also reduces the anode corrosion. Results of X-ray diffraction, fourier transform infrared spectrophotometer, scanning electron microscope and electrochemical impedance spectroscopy correlate well with the discharge and corrosion performance of AP65 anode in three water-soluble graphene solutions.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference47 articles.

1. Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities;Liu;Mater. Des.,2018

2. Performance of Mg–Zn–Cu series alloy as anodic material for magnesium battery;Zhang;Corrosion and Protection,2017

3. Mg-Ca binary alloys as anodes for primary Mg-air batteries;Deng;J. Power Sources,2018

4. Electrode materials for rechargeable zinc-Ion and Zinc-air batteries: current status and future perspectives;Yang;Electrochemical Energy Reviews,2019

5. Recent developments for aluminum–air batteries;Mori;Electrochemical Energy Reviews,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3