Critical Review of Nanoindentation-Based Numerical Methods for Evaluating Elastoplastic Material Properties

Author:

Long Xu1ORCID,Dong Ruipeng1,Su Yutai1ORCID,Chang Chao2ORCID

Affiliation:

1. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China

Abstract

It is well known that the elastoplastic properties of materials are important indicators to characterize their mechanical behaviors and are of guiding significance in the field of materials science and engineering. In recent years, the rapidly developing nanoindentation technique has been widely used to evaluate various intrinsic information regarding the elastoplastic properties and hardness of various materials such as metals, ceramics, and composites due to its high resolution, versatility, and applicability. However, the nanoindentation process of indenting materials on the nanoscale provides the measurement results, such as load-displacement curves and contact stiffness, which is challenging to analyze and interpret, especially if contained in a large amount of data. Many numerical methods, such as dimensionless analysis, machine learning, and the finite element model, have been recently proposed with the indentation techniques to further reveal the mechanical behavior of materials during nanoindentation and provide important information for material design, property optimization, and engineering applications. In addition, with the continuous development of science and technology, automation and high-throughput processing of nanoindentation experiments have become a future trend, further improving testing efficiency and data accuracy. This paper critically reviewed various numerical methods for evaluating elastoplastic constitutive properties of materials based on nanoindentation technology, which aims to provide a comprehensive understanding of the application and development trend of the nanoindentation technique and to provide guidance and reference for further research and applications.

Funder

National Natural Science Foundation of China

Regional Collaboration Project of Shanxi Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3