An Indentation Method for Determining the Elastic Modulus, Hardness and Film Thickness of a Tri-Layer Materials

Author:

Zhao Siwei1,Li Yuanxin1,Zhang Jianwei1ORCID,Wang Bingbing1,Zhao Minghao1,Lu Chunsheng2

Affiliation:

1. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

2. School of Civil and Mechanical Engineering, Curtin University, Western Australia 6845, Australia

Abstract

Multilayer materials have found extensive application within the aerospace industry due to their notable mechanical attributes. The operational longevity and dependability of such materials are substantially influenced by the performance characteristics of individual layers. In this study, an indentation method was established for employing a weighting function to simultaneously characterize the elastic modulus, hardness and film thickness of tri-layer materials. The results of numerical simulations indicate that incorporating the substrate effect in such an approach allows for precise assessment of the mechanical properties of tri-layer materials with diverse thicknesses. To validate the method, nanoindentation tests were performed using two tri-layer materials (i.e., Al/Cu/304SS and Cu/Al/304SS). Further, according to numerical and experimental data, the proposed model could be reduced to evaluate the mechanical properties of a bilayer material. The present findings demonstrate the effectiveness and applicability of the proposed indentation method in characterizing multilayer materials, facilitating reliable assessment in practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan Province for Excellent Young Scholars

Important Science & Technology Specific Projects of Henan Province

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3