The Effectiveness of Diamond-like Carbon a-C:H:Si Coatings in Increasing the Cutting Capability of Radius End Mills When Machining Heat-Resistant Nickel Alloys

Author:

Grigoriev Sergey N.ORCID,Volosova Marina A.,Fedorov Sergey V.ORCID,Migranov Mars S.,Mosyanov Mikhail,Gusev Andrey,Okunkova Anna A.ORCID

Abstract

The main purpose of this paper was to study the efficiency of using diamond-like carbon (DLC) coatings based on a-C:H:Si with a pre-formed CrAlSiN sublayer to increase the cutting ability of ball end mills made of KFM-39 cemented carbide at a speed of 150–250 m/min in milling aircraft-grade Inconel 718, and to assess the DLC coating effect on the quality of the machined surface. DLC coating performance was quantified against uncoated carbide ball end mills and the proven TiN–AlN–TiAlN gradient multilayer coating at elevated temperatures measured by the natural thermocouple method. The temperature near the cutting edge is the factor determining the wear intensity in the tool contact surfaces in milling hard-to-machine nickel alloys to the greatest extent. Thermo-EMF (electromotive force) was recorded and converted into temperatures by calibration charts. The behavior of CrAlSiN–DLC and TiN–AlN–TiAlN coatings was compared with the results of high-temperature tribological tests on a ball-on-disc friction machine. For the CrAlSiN–DLC coating at cutting speeds of 150 and 200 m/min (<650 °C), the milling time until critical flank face wear (0.4 mm) was more than 67 and 50 min, respectively (1.4–1.5 times longer than an uncoated tool and about 1.3 times longer than the TiN–AlN–TiAlN coating). The CrAlSiN–DLC coating was characterized by a minimum adhesion amount.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3