Simulation of Mechanical and Thermal Loads and Microtexturing of Ceramic Cutting Inserts in Turning a Nickel-Based Alloy
Author:
Volosova Marina A.1, Okunkova Anna A.1ORCID, Hamdy Khaled12, Malakhinsky Alexander P.1, Gkhashim Khasan I.1
Affiliation:
1. Department of High-Efficiency Processing Technologies, Moscow State University of Technology STANKIN, Vadkovskiy per. 3A, 127994 Moscow, Russia 2. Production Engineering and Mechanical Design Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
Abstract
This paper is devoted to the problem of wear resistance in square Si3N4 ceramic cutting inserts, which exhibit high hardness and strength, in combination with brittleness, and are subject to increased mechanical and thermal loads in machining super alloys for aviation purposes (e.g., a nickel-based alloy of Inconel 718 type). Microtextures were proposed to reduce the intensity of the contact loads on the pad between the cutting edge and the workpiece. The simulation of the mechanical and thermal loads demonstrated the superior ability of the faces with the preformed microgrooves (125 µm in width) compared to microwells (ø100 µm). The tense state was 4.97 times less, and deformations were 2.96 times fewer. The microtextures hamper the development of thermal fields at 900 °C. Two types of microtextures (210 µm-wide microgrooves and microwells 80 µm in diameter) were produced on the rake faces of the cutting inserts via an innovative and integrated approach (the electrical discharge machining of dielectrics using a multifunctional electro-conductive assisted and wear-resistant TiN coating and TiO2 powder mixed suspension). The TiN coating was deposited via magnetron vacuum plasma sputtering (95%N2/5%Ar). The failure criterion in turning was 400 µm. An increase of 30% in tool wear resistance was demonstrated.
Funder
Russian Science Foundation
Subject
General Materials Science,Metals and Alloys
Reference90 articles.
1. Grigoriev, S., Volosova, M., Mosyanov, M., and Fedorov, S. (2023). The Study of Radius End Mills with TiB2 Coating When Milling a Nickel Alloy. Materials, 16. 2. Asiltürk, İ., Kuntoğlu, M., Binali, R., Akkuş, H., and Salur, E. (2023). A Comprehensive Analysis of Surface Roughness, Vibration, and Acoustic Emissions Based on Machine Learning during Hard Turning of AISI 4140 Steel. Metals, 13. 3. Migranov, M.S., Shehtman, S.R., Sukhova, N.A., Mitrofanov, A.P., Gusev, A.S., Migranov, A.M., and Repin, D.S. (2023). Study of Tribotechnical Properties of Multilayer Nanostructured Coatings and Contact Processes during Milling of Titanium Alloys. Coatings, 13. 4. Feng, X., Fan, X., Hu, J., and Wei, J. (2023). Multi-Objective Optimization Design of Micro-Texture Parameters of Tool for Cutting GH4169 during Spray Cooling. Lubricants, 11. 5. Recent advances in turning with textured cutting tools: A review;Sharma;J. Clean. Prod.,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|