The Study of Radius End Mills with TiB2 Coating When Milling a Nickel Alloy

Author:

Grigoriev Sergey1ORCID,Volosova Marina1,Mosyanov Mikhail1,Fedorov Sergey1ORCID

Affiliation:

1. Department of High-Efficiency Processing Technologies, Moscow State University of Technology STANKIN, 127055 Moscow, Russia

Abstract

Nickel alloy high-speed processing technology using ball-end mills is characterized by high contact temperature and leads to accelerated tool wear. One of the effective ways to increase its reliability and service life is to modify the surface by applying functional antifriction layers in addition to wear-resistant coatings. Diamond-like carbon is often used as the latter. However, at cutting speed, when a cutting-edge temperature exceeding 650 °C is reached, the material of this coating reacts actively with oxygen in the air, and the sharply increasing adhesive component of wear quickly incapacitates the milling tooth, limiting its performance. Applying a coating of titanium diboride as an antifriction layer on top of nanocrystalline composite nitride coatings with good resistance to abrasive wear can be a solution to this problem. Our experiments have shown that such technology makes it possible to obtain a twofold increase in durability compared to a tool with a diamond-like antifriction coating in conditions when the cutting edge of the tool is subjected to cyclic thermal shocks above 800 °C, and the durability period of the radius end mill is about 50 min.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3