Effects of Ambient Temperature on the Mechanical Properties of Frictionally Welded Components of Polycarbonate and Acrylonitrile Butadiene Styrene Dissimilar Polymer Rods

Author:

Kuo Chil-Chyuan1234ORCID,Gurumurthy Naruboyana15,Huang Song-Hua6

Affiliation:

1. Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan

2. Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan

3. Department of Mechanical Engineering, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 33302, Taiwan

4. Center of Reliability Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan

5. Department of Mechanical Engineering, Presidency University, Rajankunte, Near Yelhanka, Bangalore 700073, India

6. Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 24101, Taiwan

Abstract

Rotary friction welding (RFW) has no electric arc and the energy consumption during welding can be reduced as compared with conventional arc welding since it is a solid-phase welding process. The RFW is a sustainable manufacturing process because it provides low environmental pollution and energy consumption. However, few works focus on the reliability of dissimilar polymer rods fabricated via RFW. The reliability of the frictionally welded components is also related to the ambient temperatures. This work aims to investigate the effects of ambient temperature on the mechanical properties of frictionally welded components of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) dissimilar polymer rods. It was found that the heat-affected zone width increases with increasing rotational speeds due to peak welding temperature. The Shore A surface hardness of ABS/PC weld joint does not change with the increased rotational speeds. The Shore A surface hardness in the weld joint of RFW of the ABS/PC is about Shore A 70. The bending strength was increased by about 53% when the welded parts were placed at 60–70 °C compared with bending strength at room temperature. The remarkable finding is that the bending fracture position of the weldment occurs on the ABS side. It should be pointed out that the bending strength can be determined by the placed ambient temperature according to the proposed prediction equation. The impact energy was decreased by about 33% when the welded parts were placed at 65–70 °C compared with the impact energy at room temperature. The impact energy (y) can be determined by the placed ambient temperature according to the proposed prediction equation. The peak temperature in the weld interface can be predicted by the rotational speed based on the proposed equation.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3