Machining GX2CrNiMoN26-7-4 DSS Alloy: Wear Analysis of TiAlN and TiCN/Al2O3/TiN Coated Carbide Tools Behavior in Rough End Milling Operations

Author:

Silva FranciscoORCID,Martinho RuiORCID,Martins Carlos,Lopes HernâniORCID,Gouveia Ronny

Abstract

In the last decade, it has been common to observe a competition between coatings achieved via physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques on cutting tools used in machining processes. The tool’s substrate material can immediately condition the coating process selection. However, there are also materials capabe of adapting to any of the coating processes. Hence, the capabilities demonstrated by a given coating when created with one technique or another are usually different due to the intrinsic characteristics of each coating process, such as temperature and stress levels. In this work, to study the machining behavior of a super duplex stainless steel, PVD- and CVD-coated tungsten carbide inserts with different coatings were used in order to identify the wear mechanisms that affect each of the coatings and the workpiece’s surface quality, evaluated through different roughness parameters. The vibration level produced throughout the various tests was also registered in an attempt to associate the type of coating or insert failure with the level of vibrations generated in the CNC (Computer Numeric Control) machining spindle. This allowed us to conclude that the tools coated with TiAlN via PVD showed better wear behavior, as well as creating workpiece surfaces with less roughness. Thus, it was clear that this coating presents strong advantages in the machining of the super duplex stainless steel chosen for this work, being an innovative work due to the combination of materials used and the approach in terms of vibration analysis applied to milling.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3