Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands

Author:

Baptista Andresa,Silva Francisco,Porteiro Jacobo,Míguez José,Pinto GustavoORCID

Abstract

Physical vapour deposition (PVD) is a well-known technology that is widely used for the deposition of thin films regarding many demands, namely tribological behaviour improvement, optical enhancement, visual/esthetic upgrading, and many other fields, with a wide range of applications already being perfectly established. Machining tools are, probably, one of the most common applications of this deposition technique, sometimes used together with chemical vapour deposition (CVD) in order to increase their lifespan, decreasing friction, and improving thermal properties. However, the CVD process is carried out at higher temperatures, inducing higher stresses in the coatings and substrate, being used essentially only when the required coating needs to be deposited using this process. In order to improve this technique, several studies have been carried out optimizing the PVD technique by increasing plasma ionization, decreasing dark areas (zones where there is no deposition into the reactor), improving targets use, enhancing atomic bombardment efficiency, or even increasing the deposition rate and optimizing the selection of gases. These studies reveal a huge potential in changing parameters to improve thin film quality, increasing as well the adhesion to the substrate. However, the process of improving energy efficiency regarding the industrial context has not been studied as deeply as required. This study aims to proceed to a review regarding the improvements already studied in order to optimize the sputtering PVD process, trying to relate these improvements with the industrial requirements as a function of product development and market demand.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference115 articles.

1. Vapour Deposition;Powell,1966

2. Coatings Tribology: Properties, Techniques and Applications in Surface Engineering;Holmberg,1994

3. Coatings Technology: Fundamentals, Testing, and Processing Techniques;Tracton,2007

4. Handbook of Physical Vapor Deposition (PVD) Processing Film Formation, Adhesion, Surface Preparation and Contamination Control;Mattox,1998

Cited by 248 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3