Event-Guided Image Super-Resolution Reconstruction

Author:

Guo Guangsha12,Feng Yang1,Lv Hengyi1,Zhao Yuchen1,Liu Hailong1,Bi Guoling1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The event camera efficiently detects scene radiance changes and produces an asynchronous event stream with low latency, high dynamic range (HDR), high temporal resolution, and low power consumption. However, the large output data caused by the asynchronous imaging mechanism makes the increase in spatial resolution of the event camera limited. In this paper, we propose a novel event camera super-resolution (SR) network (EFSR-Net) based on a deep learning approach to address the problems of low spatial resolution and poor visualization of event cameras. The network model is capable of reconstructing high-resolution (HR) intensity images using event streams and active sensor pixel (APS) frame information. We design the coupled response blocks (CRB) in the network that are able of fusing the feature information of both data to achieve the recovery of detailed textures in the shadows of real images. We demonstrate that our method is able to reconstruct high-resolution intensity images with more details and less blurring in synthetic and real datasets, respectively. The proposed EFSR-Net can improve the peak signal-to-noise ratio (PSNR) metric by 1–2 dB compared with state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Event Cameras and Neuromorphic Computing to VSLAM: A Survey;Biomimetics;2024-07-20

2. Recent Advances in Bio-Inspired Vision Sensor: A Review;Journal of Circuits, Systems and Computers;2024-07-10

3. Image Reconstruction Approaches Based on Fusion of Event Stream and Image Frame: A Survey;2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2024-04-19

4. Artificial intelligence-based spatio-temporal vision sensors: applications and prospects;Frontiers in Materials;2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3