Visual Odometry with an Event Camera Using Continuous Ray Warping and Volumetric Contrast Maximization

Author:

Wang Yifu,Yang JiaqiORCID,Peng XinORCID,Wu Peng,Gao LingORCID,Huang Kun,Chen Jiaben,Kneip Laurent

Abstract

We present a new solution to tracking and mapping with an event camera. The motion of the camera contains both rotation and translation displacements in the plane, and the displacements happen in an arbitrarily structured environment. As a result, the image matching may no longer be represented by a low-dimensional homographic warping, thus complicating an application of the commonly used Image of Warped Events (IWE). We introduce a new solution to this problem by performing contrast maximization in 3D. The 3D location of the rays cast for each event is smoothly varied as a function of a continuous-time motion parametrization, and the optimal parameters are found by maximizing the contrast in a volumetric ray density field. Our method thus performs joint optimization over motion and structure. The practical validity of our approach is supported by an application to AGV motion estimation and 3D reconstruction with a single vehicle-mounted event camera. The method approaches the performance obtained with regular cameras and eventually outperforms in challenging visual conditions.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. Visual simultaneous localization and mapping: a survey

2. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age

3. A 240 × 180 130 dB 3 µs Latency Global Shutter Spatiotemporal Vision Sensor

4. Event-Based Vision: A Survey

5. A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation;Gallego;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3