System-Level Performance Analysis of Cooperative Multiple Unmanned Aerial Vehicles for Wildfire Surveillance Using Agent-Based Modeling

Author:

Maqbool AyeshaORCID,Mirza Alina,Afzal FarkhandaORCID,Shah Tajammul,Khan Wazir Zada,Zikria Yousaf BinORCID,Kim Sung WonORCID

Abstract

In this paper, we propose an agent-based approach for the evaluation of Multiple Unmanned Autonomous Vehicle (MUAV) wildfire monitoring systems for remote and hard-to-reach areas. Emerging environmental factors are causing a higher number of wildfires and keeping these fires in check is becoming a global challenge. MUAV deployment for the monitoring and surveillance of potential fires has already been established. However, most of the scholarly work is still focused on MUAV operations details. In wildfire surveillance and monitoring, evaluations of the system-level performance in terms of the analysis of the effects of individual behavior on system surveillance has yet to be established. Especially in an MUAV system, the individual and cooperative behaviors of the team affect the overall performance of the system. Such systems are dynamic and stochastic because of an ever-changing environment. Quantifying the emergent system behavior and general performance measures of such a system by analytical methods is challenging. In our work, we present an agent-based model for MUAV surveillance missions. This paper focuses on the overall system performance of cooperative UAVs performing forest fire surveillance. The principal theme is to present the effects of three behaviors on overall performance: (1) the area allocation and (2) dynamic coverage, and (3) the effects of forest density on team allocation. For area allocation, three behaviors are simulated: (1) randomized, (2) two-layer barrier sweep coverage, and (3) full sweep coverage. For dynamic coverage, the effects of communication and resource unavailability during the mission are studied by analyzing the agent’s downtime spent on refueling. Last, an extensive simulation is carried out on wildfire models with varying forest density. It is found that cooperative complete sweep coverage strategies perform better than the rest and the performance of the team is greatly affected by the forest density.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3