A Control-Theoretic Spatio-Temporal Model for Wildfire Smoke Propagation Using UAV-Based Air Pollutant Measurements

Author:

Ragbir Prabhash1,Kaduwela Ajith2ORCID,Lan Xiaodong3,Watts Adam4,Kong Zhaodan1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

2. Air Quality Research Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

3. Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA

4. United States Forest Service, Pacific Wildland Fire Science Laboratory, U.S. Department of Agriculture, Seattle, WA 98103, USA

Abstract

Wildfires have the potential to cause severe damage to vegetation, property and most importantly, human life. In order to minimize these negative impacts, it is crucial that wildfires are detected at the earliest possible stages. A potential solution for early wildfire detection is to utilize unmanned aerial vehicles (UAVs) that are capable of tracking the chemical concentration gradient of smoke emitted by wildfires. A spatiotemporal model of wildfire smoke plume dynamics can allow for efficient tracking of the chemicals by utilizing both real-time information from sensors as well as future information from the model predictions. This study investigates a spatiotemporal modeling approach based on subspace identification (SID) to develop a data-driven smoke plume dynamics model for the purposes of early wildfire detection. The model was learned using CO2 concentration data which were collected using an air quality sensor package onboard a UAV during two prescribed burn experiments. Our model was evaluated by comparing the predicted values to the measured values at random locations and showed mean errors of 6.782 ppm and 30.01 ppm from the two experiments. Additionally, our model was shown to outperform the commonly used Gaussian puff model (GPM) which showed mean errors of 25.799 ppm and 104.492 ppm, respectively.

Funder

Sony Corporation

Publisher

MDPI AG

Reference52 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3