Accuracy Assessment of Drone Real-Time Open Burning Imagery Detection for Early Wildfire Surveillance

Author:

Duangsuwan Sarun1ORCID,Klubsuwan Katanyoo2

Affiliation:

1. Electrical Engineering, Department of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand

2. E-Idea Company Ltd., Bangkok 10230, Thailand

Abstract

Open burning is the main factor contributing to the occurrence of wildfires in Thailand, which every year result in forest fires and air pollution. Open burning has become the natural disaster that threatens wildlands and forest resources the most. Traditional firefighting systems, which are based on ground crew inspection, have several limits and dangerous risks. Aerial imagery technologies have become one of the most important tools to prevent wildfires, especially drone real-time monitoring for wildfire surveillance. This paper presents an accuracy assessment of drone real-time open burning imagery detection (Dr-TOBID) to detect smoke and burning as a framework for a deep learning-based object detection method using a combination of the YOLOv5 detector and a lightweight version of the long short-term memory (LSTM) classifier. The Dr-TOBID framework was designed using OpenCV, YOLOv5, TensorFlow, LebelImg, and Pycharm and wirelessly connected via live stream on open broadcaster software (OBS). The datasets were separated by 80% for training and 20% for testing. The resulting assessment considered the conditions of the drone’s altitudes, ranges, and red-green-black (RGB) mode in daytime and nighttime. The accuracy, precision, recall, and F1-Score are shown for the evaluation metrics. The quantitative results show that the accuracy of Dr-TOBID successfully detected open burning monitoring, smoke, and burning characteristics, where the average F1-score was 80.6% for smoke detection in the daytime, 82.5% for burning detection in the daytime, 77.9% for smoke detection at nighttime, and 81.9% for burning detection at nighttime.

Funder

King Mongkut’s Institute of Technology Ladkrabang

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3