A Machine Learning Approach for the Estimation of Total Dissolved Solids Concentration in Lake Mead Using Electrical Conductivity and Temperature

Author:

Adjovu Godson Ebenezer1ORCID,Stephen Haroon1ORCID,Ahmad Sajjad1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

Abstract

Total dissolved solids (TDS) concentration determination in water bodies is sophisticated, time-consuming, and involves expensive field sampling and laboratory processes. TDS concentration has, however, been linked to electrical conductivity (EC) and temperature. Compared to monitoring TDS concentrations, monitoring EC and temperature is simpler, inexpensive, and takes less time. This study, therefore, applied several machine learning (ML) approaches to estimate TDS concentration in Lake Mead using EC and temperature data. Standalone models including the support vector machine (SVM), linear regressors (LR), K-nearest neighbor model (KNN), the artificial neural network (ANN), and ensemble models such as bagging, gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), and extra trees (ET) models were used in this study. The models’ performance were evaluated using several performance metrics aimed at providing a holistic assessment of each model. Metrics used include the coefficient of determination (R2), mean absolute error (MAE), percent mean absolute relative error (PMARE), root mean square error (RMSE), the scatter index (SI), Nash–Sutcliffe model efficiency (NSE) coefficient, and percent bias (PBIAS). Results obtained showed varying model performance at the training, testing, and external validation stage of the models, with obtained R2 of 0.77–1.00, RMSE of 2.28–37.68 mg/L, an MAE of 0.14–22.67 mg/L, a PMARE of 0.02–3.42%, SI of 0.00–0.06, NSE of 0.77–1.00, and a PBIAS of 0.30–0.97 across all models for the three datasets. We utilized performance rankings to assess the model performance and found the LR to be the best-performing model on the external validation datasets among all the models (R2 of 0.82 and RMSE of 33.09 mg/L), possibly due to the established existence of a relationship between TDS and EC, although this may not always be linear. Similarly, we found the XGBoost to be the best-performing ensemble model based on the external validation with R2 of 0.81 and RMSE of 34.19 mg/L. Assessing the overall performance of the models across all the datasets, however, revealed GBM to produce a superior performance based on the ranks, possibly due to its ability to reduce overfitting and improve generalizations. The findings from this study could be employed in assisting water resources managers and stakeholders in effective monitoring and management of water resources to ensure their sustainability.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3