Spatial and Temporal Dynamics of Key Water Quality Parameters in a Thermal Stratified Lake Ecosystem: The Case Study of Lake Mead

Author:

Adjovu Godson Ebenezer1ORCID,Stephen Haroon1ORCID,Ahmad Sajjad1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

Abstract

Lake Mead located in the Arizona–Nevada region of the Mohave Dessert is a unique and complex water system whose flow follows that of a warm monomictic lake. Although monomictic lakes experience thermal stratification for almost the entire year with a period of complete mixing, the lake on occasion deviates from this phenomenon, undergoing incomplete turnovers categorized with light stratifications every other year. The prolonged drought and growing anthropogenic activities have the potential to considerably impact the quality of the lake. Lake Mead and by extension the Boulder Basin receive cooler flow from the Colorado River and flow with varying temperatures from the Las Vegas Wash (LVW), which impacts its stratification and complete turnovers. This study analyzes four key water quality parameters (WQPs), namely, total dissolved solids (TDS), total suspended solids (TSS), temperature, and dissolved oxygen (DO), using statistical and spatial analyses to understand their variations in light of the lake stratifications and turnovers to further maintain its overall quality and sustainability. The study also evaluates the impacts of hydrological variables including in and out flows, storage, evaporation, and water surface elevation on the WQPs. The results produced from the analysis show significant levels of TDS, TSS, and temperature from the LVW and Las Vegas Bay regions compared with the Boulder Basin. LVW is the main channel for conveying effluents from several wastewater treatment facilities into the lake. We observed an increase in the levels of TDS, TSS, and temperature water quality in the epilimnion compared with the other layers of the lake. The metalimnion and the hypolimnion layer, however, showed reduced DO due to depletion by algal blooms. We observed statistically significant differences in the WQPs throughout various months, but not in the case for season and year, an indication of relatively consistent variability throughout each season and year. We also observed a no clear trend of influence of outflows and inflows on TDS, temperature, and DO. TSS concentrations in the lake, however, remained constant, irrespective of the inflows and outflows, possibly due to the settling of the sediments and the reservoir capacity.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3