Occurrence and abundance of microplastics in surface water of Songkhla Lagoon

Author:

Pradit Siriporn12ORCID,Noppradit Prakrit12ORCID,Sornplang Kittiwara12,Jitkaew Preyanuch12,Jiwarungrueangkul Thanakorn23,Muenhor Dudsadee456

Affiliation:

1. Marine and Coastal Resources Institute, Faculty of Environmental Management, Songkhla, Thailand

2. Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand

3. Marine Environment and Geoinformatics Technology Research Unit, Faculty of Technology and Environment, Prince of Songkla University, Phuket, Thailand

4. Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, Thailand

5. Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand

6. Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand

Abstract

Background Microplastic (MP) pollution is now a global critical issue and has been the subject of considerable worry for multiple various types of habitats, notably in lagoons which are coastal areas connected to the ocean. MPs are of concern, particularly because floating MP in surface water can be ingested by a number of marine organisms. There are several lagoons along Southeast Asia’s coastline, but Songkhla Lagoon is Thailand’s only exit with a rich biodiversity. To date, there has been little research undertaken on MP in this lagoon, so there is a pressing need to learn more about the presence of MP in the lagoon’s water. Methods We investigate MPs in the surface water of Songkhla Lagoon, Thailand. Sampling took place at ten stations in the lagoon during the wet season in December 2022 and the dry season in February 2023. Samples were digested with hydrogen peroxide to remove organic matter followed by density separation using saturated sodium chloride. MPs were visually examined under a stereo microscope to describe and determine the shape, size, and color. Polymer type was identified using a micro Fourier transform infrared (FTIR) spectrometer. Moreover, the in-situ of water quality of the surface water was measured using a multi-parameter probe. A Mann-Whitney U test was performed to investigate the variations in MP levels and water quality parameters between the wet and dry seasons. Correlation analysis (Spearman rho) was used to determine the significance of correlations between MP and water quality (p < 0.05). Results MPs were detected at all ten of the sites sampled. The most abundant MPs were small size class (<500 µm, primarily consisting of fibers). Five types of polymers were seen in surface water, including polyethylene terephthalate, rayon, polypropylene, polyester, and poly (ethylene:propylene). Rayon and polyester were the dominant polymers. Additionally, the most dominant color of MPs in the wet and dry season was black and blue, respectively. The mean contents of MPs in the wet and dry season were 0.43 ± 0.18 and 0.34 ± 0.08 items/L, respectively. The Mann-Whitney U test suggested a significant difference between water quality in the wet and dry seasons (p < 0.05). Correlation analysis (Spearman rho) indicated a negative significant difference relationship between the MPs and the values of total dissolved solid (TDS) in the wet season (r = −0.821, p = <0.05), revealing that the large amounts of MPs may possibly be dispersed within surface water bodies with low TDS concentrations. Based on the overall findings, MP pollution in the surface water of the lagoon is not found to be influenced by the seasonal context. Rivers flowing into the lagoon, especially the U-Taphao River, may be a principal pathway contributing to increased MP pollution loading in the lagoon. The results can be used as baseline data to undertake further research work relevant to sources, fates, distribution, and impacts of MPs in other coastal lagoons.

Funder

National Science, Research, and Innovation Fund

Prince of Songkla University

Publisher

PeerJ

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3