A Planning Framework for Robotic Insertion Tasks via Hydroelastic Contact Model

Author:

Yang Lin1ORCID,Ariffin Mohammad Zaidi1ORCID,Lou Baichuan1ORCID,Lv Chen1ORCID,Campolo Domenico1ORCID

Affiliation:

1. Robotics Research Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Robotic contact-rich insertion tasks present a significant challenge for motion planning due to the complex force interaction between robots and objects. Although many learning-based methods have shown success in contact tasks, most methods need sampling or exploring to gather sufficient experimental data. However, it is both time-consuming and expensive to conduct real-world experiments repeatedly. On the other hand, while the virtual world enables low cost and fast computations by simulators, there still exists a huge sim-to-real gap due to the inaccurate point contact model. Although finite element analysis might generate accurate results for contact tasks, it is computationally expensive. As such, this study proposes a motion planning framework with bilevel optimization to leverage relatively accurate force information with fast computation time. This framework consists of Dynamic Movement Primitives (DMPs) used to parameterize motion trajectories, Black-Box Optimization (BBO), a derivative-free approach, integrated to improve contact-rich insertion policy with hydroelastic contact model, and simulated variability to account for visual uncertainty in the real world. The accuracy of the simulated model is then validated by comparing our contact results with a benchmark Peg-in-Hole task. Using these integrated DMPs and BBO with hydroelastic contact model, the motion trajectory generated in planning is capable of guiding the robot towards successful insertion with iterative refinement.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference38 articles.

1. A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms;Kroemer;J. Mach. Learn. Res.,2021

2. State-of-the-Art control strategies for robotic PiH assembly;Jiang;Robot. Comput.-Integr. Manuf.,2020

3. A survey of robot manipulation in contact;Suomalainen;Robot. Auton. Syst.,2022

4. Solving peg-in-hole tasks by human demonstration and exception strategies;Nemec;Ind. Robot. Int. J.,2014

5. Trends and challenges in robot manipulation;Billard;Science,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quasi-Static Mechanical Manipulation as an Optimal Process;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3