Pose Determination System for a Serial Robot Manipulator Based on Artificial Neural Networks

Author:

Rodríguez-Miranda Sergio12ORCID,Yañez-Mendiola Javier1ORCID,Calzada-Ledesma Valentin3ORCID,Villanueva-Jimenez Luis Fernando4ORCID,De Anda-Suarez Juan5ORCID

Affiliation:

1. Graduate Department (PICYT), Centro de Innovación Aplicada en Tecnologías Competitivas, León 37545, Mexico

2. Automotive Systems Engineering Department, Instituto Superior de Jalisco, Lagos de Moreno 47480, Mexico

3. Computer Engineering Department, Instituto Tecnológico Superior de Purísima del Rincón, Purísima del Rincón 36425, Mexico

4. Industrial Engineering Department, Instituto Tecnológico Superior de Purísima del Rincón, Purísima del Rincón 36425, Mexico

5. Electromechanical Engineering Department, Instituto Tecnológico Superior de Purísima del Rincón, Purísima del Rincón 36425, Mexico

Abstract

Achieving the highest levels of repeatability and precision, especially in robot manipulators applied in automation manufacturing, is a practical pose-recognition problem in robotics. Deviations from nominal robot geometry could produce substantial errors at the end effector, which can be more than 0.5 inches for a 6 ft robot arm. In this research, a pose-recognition system is developed for estimating the position of each robot joint and end-effector pose using image processing. To generate the joint angle, the system is developed via the modeling of a pose obtained by combining a convolutional neural network (CNN) and a multi-layer perceptron network (MLP). The CNN categorizes the input image generated by a remote monocular camera and generates a classification probability vector. The MLP generates a multiple linear regression model based on the probability vector generated by a CNN and describes the values of each joint angle. The proposed model is compared with the P-n-Perspective problem-solving method, which is based on marker tracking using ArUco markers and the encoder values. The system was verified using a robot manipulator with four degrees of freedom. Additionally, the proposed method exhibits superior performance in terms of joint-by-joint error, with an absolute error that is three units less than that of the computer vision method. Furthermore, when evaluating the end-effector pose, the proposed method showed a lower average standard deviation of 9mm compared with the computer vision method, which had a standard deviation of 13 mm.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surface Normal Generation and Compliance Control for Robotic Based Machining Operations;2024 9th International Conference on Control and Robotics Engineering (ICCRE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3