A Sliding Mode Approach-Based Adaptive Steering Control Algorithm for Path Tracking of Autonomous Mobility with Weighted Injection

Author:

Kim Sehwan1,Oh Kwangseok1ORCID

Affiliation:

1. School of ICT, Robotics & Mechanical Engineering, Hankyong National University, Anseong-si 17579, Republic of Korea

Abstract

The increasing complexity of mathematical models developed as part of the recent advancements in autonomous mobility platforms has led to an escalation in uncertainty. Despite the intricate nature of such models, the detection, decision, and control methods for autonomous mobility path tracking remain critical. This study aims to achieve path tracking based on pixel-based control errors without parameters in the mathematical model. The proposed approach entails deriving control errors from a multi-particle filter based on a camera, estimating the error dynamics coefficients through a recursive least squares (RLS) approach, and using the sliding mode approach and weighted injection to formulate a cost function that leverages the estimated coefficients and control errors. The resultant adaptive steering control expedites the convergence of control errors towards zero by determining the magnitude of the injection variable based on the control errors and the finite-time convergence condition. The efficacy of the proposed approach is evaluated through an S-curved and elliptical path using autonomous mobility equipped with a single steering and driving module. The results demonstrate the capability of the approach to reasonably track target paths through driving and steering control facilitated by a multi-particle filter and a lidar-based obstacle detection system.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3