Dynamic Modeling and Analysis of Loader Working Mechanism Considering Cooperative Motion with the Vehicle Body

Author:

Liang GuodongORCID,Liu Li,Meng YuORCID,Chen Yanhui,Bai Guoxing,Fang Huazhen

Abstract

Achieving precise load detection for Intelligent Loaders is an important task, which directly affects the operation energy efficiency and the fatigue life analysis for the loader’s working mechanism. The operation of the mechanism is regarded as a 3-DOF (degree of freedom) planar motion process coordinated with the vehicle body. Affected by complex dynamic coupling in motion, the existing dynamic models of the mechanism have the problem of insufficient accuracy, which is not conducive to the precise calculation of load. Taking the reverse six-linkage loader as the research object, an accurate dynamic model of the mechanism is established considering its cooperative motion with the vehicle body. Firstly, the kinematic description of the mechanism is given by the Rodriguez method. Then, to overcome the coupling effect caused by the cooperative motion, the sufficient inertia forces of the mechanism are established in joint space using the Lagrange method. Furthermore, to overcome the coupling effect caused by the complex structure, the Newton–Euler method is used to establish the force mapping relations between the joint space and the drive space by multi-body modeling. Finally, the dynamic model of the mechanism in drive space is obtained, and the specific mapping relations between the bucket force, the vehicle driving force, and the drive parameters are given. Compared with existing dynamic models in simulation, the analysis shows that the average and maximum absolute errors of the vehicle driving force calculated by the established model do not exceed 20% of the existing model errors, and the corresponding errors of the bucket force do not exceed 10% of the existing model errors, which proves that the motions of vehicle body and front-end mechanism, as well as the force of the tilt hydraulic cylinder, play important roles in improving the model accuracy. The established model is superior to existing models and is more suitable for cooperative motion with the vehicle body.

Funder

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3