Machine Learning-Based Shoveling Trajectory Optimization of Wheel Loader for Fuel Consumption Reduction

Author:

Chen Yanhui12,Shi Gang2,Tan Cheng1,Wang Zhiwen3ORCID

Affiliation:

1. Department of Mechanical and Electrical Engineering, Guangxi Vocational College of Water Resources and Electric Power, Nanning 530023, China

2. School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

3. School of Computer Science and Telecommunication Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

The difference in fuel consumption of wheel loaders can be more than 30% according to different shoveling trajectories for shoveling operations, and the optimization of shoveling trajectories is an important way to reduce the fuel consumption of shoveling operations. The existing shoveling trajectory optimization method is mainly through theoretical calculation and simulation analysis, which cannot fully consider the high randomness and complexity of the shoveling process. It is difficult to achieve the desired optimization effect. Therefore, this paper takes the actual shoveling operation data as the basis. The factors that have a high impact on the fuel consumption of shoveling are screened out through Kernel Principal Component Analysis. Moreover, the mathematical model of fuel consumption of shoveling operation is established by Support Vector Machine and combined with the Improved Particle Swarm Optimization algorithm to optimize the shoveling trajectory. To demonstrate the generalization ability of the model, two materials, gravel, and sand, are selected. Meanwhile, the influence of different engine speeds on the shoveling operation is considered. We optimize the shoveling trajectories for three different engine speeds. The optimized trajectories are verified and compared with the sample data and manually controlled shoveling data. The results show that the optimized trajectory can reduce the fuel consumption of shoveling operation by 27.66% and 24.34% compared with the manually controlled shoveling of gravel and sand, respectively. This study provides guidance for the energy-efficient operation of wheel loaders.

Funder

National Natural Science Foundation of China

Key Projects of Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3