USV Application Scenario Expansion Based on Motion Control, Path Following and Velocity Planning

Author:

Feng Ziang,Pan Zaisheng,Chen WeiORCID,Liu Yong,Leng Jianxing

Abstract

The ability of unmanned surface vehicles (USV) on motion control and the accurate following of preset paths is the embodiment of its autonomy and intelligence, while there is extensive room for improvement when expanding its application scenarios. In this paper, a model fusion of USV and preset path was carried out through the Serret-Frenet coordinate system. Control strategies were then scrupulously designed with the help of Lyapunov stability theory, including resultant velocity control in the presence of drift angle, course control based on the nonlinear backstepping method, and reference point velocity control as a virtual control variable. Specifically, based on USV resultant velocity control, this paper proposes respective solutions for two common scenarios through velocity planning. In a derailment correction scenario, an adaptive reference velocity was designed according to the position and attitude of USV, which promoted its maneuverability remarkably. In a dynamic obstacle avoidance scenario, an appropriate velocity curve was searched by dynamic programming on ST graph and optimized by quadratic programming, which enabled USV to evade obstacles without changing the original path. Simulation results proved the convergence and reliability of the motion control strategies and path following algorithm. Furthermore, velocity planning was verified to perform effectively in both scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3