Online Adaptive PID Control for a Multi-Joint Lower Extremity Exoskeleton System Using Improved Particle Swarm Optimization

Author:

Liu Jiaqi,Fang HongbinORCID,Xu Jian

Abstract

Robotic exoskeletons have great potential in the medical rehabilitation and augmentation of human performance in a variety of tasks. Proposing effective and adaptive control strategies is one of the most challenging issues for exoskeleton systems to work interactively with the user in dynamic environments and variable tasks. This research, therefore, aims to advance the state of the art of the exoskeleton adaptive control by integrating the excellent search capability of metaheuristic algorithms with the PID feedback mechanism. Specifically, this paper proposes an online adaptive PID controller for a multi-joint lower extremity exoskeleton system by making use of the particle swarm optimization (PSO) algorithm. Significant improvements, including a ‘leaving and re-searching mechanism’, are introduced into the PSO algorithm for better and faster update of the solution and to prevent premature convergence. In this research, a 9-DOF lower extremity exoskeleton with seven controllable joints is adopted as a test-bench, whose first-principle dynamic model is developed, which includes as many uncertain factors as possible for generality, including human–exoskeleton interactions, environmental forces, and joint unilateral constraint forces. Based upon this, to illustrate the effectiveness of the proposed controller, the human–exoskeleton coupled system is simulated in four characteristic scenarios, in which the following factors are considered: exoskeleton parameter perturbations, human effects, walking terrain switches, and walking speed variations. The results indicate that the proposed controller is superior to the standard PSO algorithm and the conventional PID controller in achieving rapid convergence, suppressing the undesired chattering of PID gains, adaptively adjusting PID coefficients when internal or external disturbances are encountered, and improving tracking accuracy in both position and velocity. We also demonstrate that the proposed controller could be used to switch the working mode of the exoskeleton for either performance or an energy-saving consideration. Overall, aiming at a multi-joint lower extremity exoskeleton system, this research proposes a PSO-based online adaptive PID controller that can be easily implemented in applications. Through rich and practical case studies, the excellent anti-interference capability and environment/task adaptivity of the controller are exemplified.

Funder

the National Key Research and Development Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3