Research on Lower Limb Exoskeleton Trajectory Tracking Control Based on the Dung Beetle Optimizer and Feedforward Proportional–Integral–Derivative Controller

Author:

Li Changming1,Di Haiting1ORCID,Liu Yongwang1,Liu Ke1

Affiliation:

1. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

The lower limb exoskeleton (LLE) plays an important role in production activities requiring assistance and load bearing. One of the challenges is to propose a control strategy that can meet the requirements of LLE trajectory tracking in different scenes. Therefore, this study proposes a control strategy (DBO–FPID) that combines the dung beetle optimizer (DBO) with feedforward proportional–integral–derivative controller (FPID) to improve the performance of LLE trajectory tracking in different scenes. The Lagrange method is used to establish the dynamic model of the LLE rod, and it is combined with the dynamic equations of the motor to obtain the LLE transfer function model. Based on the LLE model and target trajectory compensation, the feedforward controller is designed to achieve trajectory tracking in different scenes. To obtain the best performance of the controller, the DBO is utilized to perform offline parameter tuning of the feedforward controller and PID controller. The proposed control strategy is compared with the DBO tuning PID (DBO–PID), particle swarm optimizer (PSO) tuning FPID (PSO–FPID), and PSO tuning PID (PSO–PID) in simulation and joint module experiments. The results show that DBO–FPID has the best accuracy and robustness in trajectory tracking in different scenes, which has the smallest sum of absolute error (IAE), mean absolute error (MEAE), maximum absolute error (MAE), and root mean square error (RMSE). In addition, the MEAE of DBO–FPID is lower than 1.5 degrees in unloaded tests and lower than 3.6 degrees in the hip load tests, with only a few iterations, showing great practical potential.

Funder

Undergraduate Training Program for Innovation and Entrepreneurship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3