Affine Layer-Enabled Transfer Learning for Eye Tracking with Facial Feature Detection in Human–Machine Interactions

Author:

Hu ZhongxuORCID,Zhang Yiran,Lv ChenORCID

Abstract

Eye tracking is an important technique for realizing safe and efficient human–machine interaction. This study proposes a facial-based eye tracking system that only relies on a non-intrusive, low-cost web camera by leveraging a data-driven approach. To address the challenge of rapid deployment to a new scenario and reduce the workload of the data collection, this study proposes an efficient transfer learning approach that includes a novel affine layer to bridge the gap between the source domain and the target domain to improve the transfer learning performance. Furthermore, a calibration technique is also introduced in this study for model performance optimization. To verify the proposed approach, a series of comparative experiments are conducted on a designed experimental platform to evaluate the effects of various transfer learning strategies, the proposed affine layer module, and the calibration technique. The experiment results showed that the proposed affine layer can improve the model’s performance by 7% (without calibration) and 4% (with calibration), and the proposed approach can achieve state-of-the-art performance when compared to the others.

Funder

Alibaba Group, through the Alibaba Innovative Research (AIR) Program and the Alibaba–Nanyang Technological University Joint Research Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3