High-Performance Lightweight Fall Detection with an Improved YOLOv5s Algorithm

Author:

Wang Yuanpeng1ORCID,Chi Zhaozhan2,Liu Meng2,Li Guangxian23,Ding Songlin3ORCID

Affiliation:

1. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China

2. School of Mechanical Engineering, Guangxi University, Nanning 530004, China

3. School of Engineering, RMIT University, Melbourne 3000, Australia

Abstract

The aging population has drastically increased in the past two decades, stimulating the development of devices for healthcare and medical purposes. As one of the leading potential risks, the injuries caused by accidental falls at home are hazardous to the health (and even lifespan) of elderly people. In this paper, an improved YOLOv5s algorithm is proposed, aiming to improve the efficiency and accuracy of lightweight fall detection via the following modifications that elevate its accuracy and speed: first, a k-means++ clustering algorithm was applied to increase the accuracy of the anchor boxes; the backbone network was replaced with a lightweight ShuffleNetV2 network to embed simplified devices with limited computing ability; an SE attention mechanism module was added to the last layer of the backbone to improve the feature extraction capability; the GIOU loss function was replaced by a SIOU loss function to increase the accuracy of detection and the training speed. The results of testing show that the mAP of the improved algorithm was improved by 3.5%, the model size was reduced by 75%, and the time consumed for computation was reduced by 79.4% compared with the conventional YOLOv5s. The algorithm proposed in this paper has higher detection accuracy and detection speed. It is suitable for deployment in embedded devices with limited performance and with lower cost.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3