An Improved Data-Driven Calibration Method with High Efficiency for a 6-DOF Hybrid Robot

Author:

Yan Zhibiao,Wang Youyu,Liu HaitaoORCID,Xiao Juliang,Huang Tian

Abstract

This paper proposes an improved data-driven calibration method for a six degrees of freedom (DOF) hybrid robot. It focuses mainly on improving the measurement efficiency and practicability of existing data-driven calibration methods through the following approaches. (1) The arbitrary motion of the hybrid robot is equivalently decomposed into three independent sub-motions by motion decomposition. Sequentially, the sub-motions are combined according to specific motion rules. Then, a large number of robot poses can be acquired in the whole workspace via a limited number of measurements, effectively solving the curse of dimensionality in measurement. (2) A mapping between the nominal joint variables and joint compensation values is established using a back propagation neural network (BPNN), which is trained directly using the measurement data through a unique algorithm involving inverse kinematics. Thus, the practicability of data-driven calibration is significantly improved. The validation experiments are carried out on a TriMule-200 robot. The results show that the robot’s maximal position/orientation errors are reduced by 91.16%/88.17% to 0.085 mm/0.022 deg, respectively, after calibration.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Reference40 articles.

1. Kinematic calibration of a 5-axis parallel machining robot based on dimensionless error mapping matrix;Luo;Robot. Comput. Integr. Manuf.,2021

2. Calibration of parallel manipulators and their application to machine tools;Ing. Investig. Tecnol.,2010

3. Geometric calibration of industrial robots using enhanced partial pose measurements and design of experiments;Wu;Comput. Integr. Manuf.,2015

4. Stiffness modeling and analysis of a novel 5-DOF hybrid robot;Dong;Mech. Mach. Theory,2018

5. Automatic self-calibration of suspended under-actuated cable-driven parallel robot using incremental measurements;Merlet;Cable-Driven Parallel Robots,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3