Abstract
In this paper, we introduce a self-trained controller for autonomous navigation in static and dynamic (with moving walls and nets) challenging environments (including trees, nets, windows, and pipe) using deep reinforcement learning, simultaneously trained using multiple rewards. We train our RL algorithm in a multi-objective way. Our algorithm learns to generate continuous action for controlling the UAV. Our algorithm aims to generate waypoints for the UAV in such a way as to reach a goal area (shown by an RGB image) while avoiding static and dynamic obstacles. In this text, we use the RGB-D image as the input for the algorithm, and it learns to control the UAV in 3-DoF (x, y, and z). We train our robot in environments simulated by Gazebo sim. For communication between our algorithm and the simulated environments, we use the robot operating system. Finally, we visualize the trajectories generated by our trained algorithms using several methods and illustrate our results that clearly show our algorithm’s capability in learning to maximize the defined multi-objective reward.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献