Abstract
Fault diagnosis is essential for assuring the safety and dependability of rotating machinery systems. Several emerging techniques, especially artificial intelligence-based technologies, are used to overcome the difficulties in this field. In most engineering scenarios, machines perform in normal conditions, which implies that fault data may be hard to acquire and limited. Therefore, the data imbalance and the deficiency of labels are practical challenges in the fault diagnosis of machinery bearings. Among the mainstream methods, transfer learning-based fault diagnosis is highly effective, as it transfers the results of previous studies and integrates existing resources. The knowledge from the source domain is transferred via Domain Adversarial Training of Neural Networks (DANN) while the dataset of the target domain is partially labeled. A semi-supervised framework based on uncertainty-aware pseudo-label selection (UPS) is adopted in parallel to improve the model performance by utilizing abundant unlabeled data. Through experiments on two bearing datasets, the accuracy of bearing fault classification surpassed the independent approaches.
Funder
National Natural Science Foundation of China
Jiangsu Provincial Qinglan Project
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献