Funder
National Natural Science Foundation of China
Hunan Provincial Science and Technology Innovation Talent Project
Hunan Provincial Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Bin, G.F., Jiang, Z.N., Li, X.J., Dhillon, B.S.: Weighted multi-sensor data level fusion method of vibration signal based on correlation function. Chin. J. Mech. Eng. 5, 025 (2011)
2. Wu, Z., Zhang, H., Guo, J., Ji, Y., Pecht, M.: Imbalanced bearing fault diagnosis under variant working conditions using cost-sensitive deep domain adaptation network. Expert Syst. Appl. 193, 116459 (2022)
3. Tama, B.A., Vania, M., Lee, S., Lim, S.: Recent advances in the application of deep learning for fault diagnosis of rotating machinery using vibration signals. Artif. Intell. Rev. 56(5), 4667–4709 (2023)
4. An, Y., Zhang, K., Chai, Y., Liu, Q., Huang, X.: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions. Expert Syst. Appl. 212, 118802 (2023)
5. Li, S., Peng, Y.F., Shen, Y.P., Zhao, S.B., Shao, H.D., Bin, G.F., Yang, X.K., Fan, C.: Rolling bearing fault diagnosis under data imbalance and variable speed based on adaptive clustering weighted oversampling. Reliab. Eng. Syst. Saf. 244, 109938 (2024)