Abstract
AbstractVibration measurement and monitoring are essential in a wide variety of applications. Vibration measurements are critical for diagnosing industrial machinery malfunctions because they provide information about the condition of the rotating equipment. Vibration analysis is considered the most effective method for predictive maintenance because it is used to troubleshoot instantaneous faults as well as periodic maintenance. Numerous studies conducted in this vein have been published in a variety of outlets. This review documents data-driven and recently published deep learning techniques for vibration-based condition monitoring. Numerous studies were obtained from two reputable indexing databases, Web of Science and Scopus. Following a thorough review, 59 studies were selected for synthesis. The selected studies are then systematically discussed to provide researchers with an in-depth view of deep learning-based fault diagnosis methods based on vibration signals. Additionally, a few remarks regarding future research directions are made, including graph-based neural networks, physics-informed ML, and a transformer convolutional network-based fault diagnosis method.
Funder
National Research Foundation of Korea
Ulsan National Institute of Science and Technology
Institute for Basic Science
Institute of Civil Military Technology Cooperation
Korea Institute of Energy Technology Evaluation and Planning
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献