High-Impedance Fault Detection Methodology Using Time–Frequency Spectrum and Transfer Convolutional Neural Network in Distribution Networks
Author:
Affiliation:
1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, China
2. Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan
Funder
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Control and Systems Engineering,Computer Networks and Communications,Computer Science Applications,Information Systems
Link
http://xplorestaging.ieee.org/ielx7/4267003/10235272/10153959.pdf?arnumber=10153959
Reference35 articles.
1. A Resilient Protection Scheme for Common Shunt Fault and High Impedance Fault in Distribution Lines Using Wavelet Transform
2. Regulatory impact statement: Bushfire mitigation regulations ammendment. department of economic development,2015
3. High Impedance Arc Fault Detection Based on the Harmonic Randomness and Waveform Distortion in the Distribution System
4. Sustainable Deep Learning at Grid Edge for Real-time High Impedance Fault Detection
5. High Impedance Fault detection based on harmonic energy variation via S-transform
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. High impedance fault detection in distribution networks using randomness of zero-sequence current signal: A detrended fluctuation analysis approach;Applied Energy;2024-08
2. A novel protection relay for neutral effectively grounded distribution networks independent on sequence components;International Journal of Electrical Power & Energy Systems;2024-08
3. Active Distribution Network Fault Identification Based on Deep Learning of Fused Entropy Features;2024
4. A Critical Analysis on Different High Impedance Fault Detection Schemes;Electric Power Components and Systems;2023-11-22
5. A visual faulty feeder detection method for power distribution network based on spatial image generation and deep learning;IET Generation, Transmission & Distribution;2023-11-20
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3