A visual faulty feeder detection method for power distribution network based on spatial image generation and deep learning

Author:

Guo Wei1ORCID,Shi Yuntao1

Affiliation:

1. School of Electrical and Control Engineering North China University of Technology Beijing People's Republic of China

Abstract

AbstractIn the case of a single‐phase grounding fault in the distribution network, the transient zero‐sequence current (TZSC) tends to be non‐linear and non‐stationary. The faulty line selection is relatively difficult. The distributed power access further brings many difficulties to faulty line selection. This work proposes a novel method of faulty line selection using spatial image generation and deep learning. At first, the optimal smooth denoising model can be used to smooth the zero‐sequence current for each line, reducing the external environment electromagnetic interference. Then, the treated zero‐sequence current is mapped into the colorful floral hoop image by using symmetrized Hilbert transform pattern (SHTP). The SHTP transforms the one‐dimensional time domain signal into the two‐dimensional space domain image, enhancing invisible information and obtaining more abundant feature information. Finally, the deep features of the SHTP floral hoop image are extracted by means of deep learning method. In order to improve the faulty line selection universality, a mixed sample library containing three different topologies is established, including the 10 kV radial distribution network, IEEE‐13 node model, IEEE‐34 node model and StarSim platform. The comparisons show that the proposed method has a more noticeable visualization effect on fault features, higher classification precision rate, and better anti‐noise performance.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3